Received 7 August 2006

Accepted 8 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Liu, Jun-Mei Tang and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.062 wR factor = 0.186 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The asymmetric unit of the title compound, $C_{24}H_{18}O_6$,

Dimethyl 2,5-dibenzoylterephthalate

The asymmetric unit of the title compound, $C_{24}H_{18}O_6$, contains one half-molecule of dimethyl 2,5-dibenzoylterephthalate, which is located on a centre of inversion. Intermolecular $C-H\cdots O$ hydrogen bonds result in the formation of a three-dimensional framework, which seems to be effective in the stabilization of the crystal structure.

Comment

Dimethyl 2,5-dibenzoylterephthalate is obtained from pseudo-2,5-dibenzoylterephthaloyl chloride, which is an intermediate used to synthesize the monomer 2,5-dibenzoyl-1,4-phenylenediamine utilized to synthesize organic semiconductors and conjugated polymers (Tonzola *et al.*, 2003). We report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The asymmetric unit contains one half-molecule of dimethyl 2,5-dibenzoyl-terephthalate, which is located on a centre of inversion.

The rings A (C3–C5/C3A–C5A) and B (C7–C12) are, of course, planar and the dihedral angle between them is A/B = 79.82 (3)°.

The intermolecular $C-H\cdots O$ hydrogen bonds (Table 1) seem to be effective in the stabilization of the crystal structure. Hydrogen bonds play an important role in the construction of the three-dimensional framework (Fig. 2).

Experimental

Compound (I) was prepared by dissolving pseudo-2,5-dibenzoyl-terephthaloyl chloride (1.0 g, 2.4 mmol) (Liu *et al.*, 2006) in methanol (30 ml), reacting at 298 K for about 5 d. Crystals were obtained by evaporating the solvent methanol slowly at room temperature for about 20 d.

All rights reserved

© 2006 International Union of Crystallography

organic papers

Crystal data

 $\begin{array}{l} C_{24}H_{18}O_6 \\ M_r = 402.38 \\ \text{Monoclinic, } P_{2,1}/c \\ a = 5.391 \ (3) \ \mathring{A} \\ b = 9.192 \ (1) \ \mathring{A} \\ c = 20.656 \ (2) \ \mathring{A} \\ \beta = 93.25 \ (3)^\circ \\ V = 1021.9 \ (6) \ \mathring{A}^3 \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.963, T_{\max} = 0.991$ 2218 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.186$ S = 1.021999 reflections 137 parameters H-atom parameters constrained Z = 2 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K Block, colorless 0.40 × 0.30 × 0.10 mm

1999 independent reflections 1155 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 26.0^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: none

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.1P)^2 \\ &+ 0.06P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} &= 0.33 \text{ e} \text{ Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.19 \text{ e} \text{ Å}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.048 (8) \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9–H9A···O3 ⁱ	0.93	2.43	3.340 (5)	166
6 (i)	1.1.1	i 1		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (A) 2 - x, -y, -z].

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Enraf–Nonius (1985). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Liu, S., Liu, J.-N., Song, G.-L., Wu, Y.-M. & Zhu, H.-J. (2006). Acta Cryst. E62, 03099–03100.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558.