Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Liu, Jun-Mei Tang and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.186$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dimethyl 2,5-dibenzoylterephthalate

The asymmetric unit of the title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6}$, contains one half-molecule of dimethyl 2,5-dibenzoylterephthalate, which is located on a centre of inversion. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds result in the formation of a three-dimensional framework, which seems to be effective in the stabilization of the crystal structure.

Comment

Dimethyl 2,5-dibenzoylterephthalate is obtained from pseudo-2,5-dibenzoylterephthaloyl chloride, which is an intermediate used to synthesize the monomer 2,5-dibenzoyl-1,4-phenylenediamine utilized to synthesize organic semiconductors and conjugated polymers (Tonzola et al., 2003). We report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half-molecule of dimethyl 2,5-dibenzoylterephthalate, which is located on a centre of inversion.

The rings $A(\mathrm{C} 3-\mathrm{C} 5 / \mathrm{C} 3 A-\mathrm{C} 5 A)$ and $B(\mathrm{C} 7-\mathrm{C} 12)$ are, of course, planar and the dihedral angle between them is $A / B=$ 79.82 (3) ${ }^{\circ}$.

The intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) seem to be effective in the stabilization of the crystal structure. Hydrogen bonds play an important role in the construction of the three-dimensional framework (Fig. 2).

Experimental

Compound (I) was prepared by dissolving pseudo-2,5-dibenzoylterephthaloyl chloride ($1.0 \mathrm{~g}, 2.4 \mathrm{mmol}$) (Liu et al., 2006) in methanol (30 ml), reacting at 298 K for about 5 d . Crystals were obtained by evaporating the solvent methanol slowly at room temperature for about 20 d .

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{6}$
$M_{r}=402.38$
Monoclinic, $P 2_{1} / c$
$a=5.391$ (3) \AA
$b=9.192$ (1) \AA
$c=20.656$ (2) \AA
$\beta=93.25$ (3) ${ }^{\circ}$
$V=1021.9(6) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.963, T_{\text {max }}=0.991$
2218 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.186$
$S=1.02$
1999 reflections
137 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.43	$3.340(5)$	166

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H , respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=1.2$ for aromatic H and $x=1.5$ for methyl H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (A) $2-x,-y,-z$].

Figure 2
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Liu, S., Liu, J.-N., Song, G.-L., Wu, Y.-M. \& Zhu, H.-J. (2006). Acta Cryst. E62, o3099-o3100.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tonzola, C. J., Alam, M. M., Kaminsky, W. \& Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

